Theorem T103 For all real numbers aia_iai, bib_ibi, i=1,2,…,ni = 1, 2, \ldots, ni=1,2,…,n, (a12+a22+…+an2)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn)2 ,(a_1^2 + a_2^2 + \ldots + a_n^2) (b_1^2 + b_2^2 + \ldots + b_n^2) \geq (a_1 b_1 + a_2 b_2 + \ldots + a_n b_n)^2 \; , (a12+a22+…+an2)(b12+b22+…+bn2)≥(a1b1+a2b2+…+anbn)2, with equality if and only if aia_iai and bib_ibi are proportional for all iii.