MathItems

Theorem T37

Let FnF_n be the Fibonacci numbers. Then

F_n = \frac{\phi^n - \hat{\phi}\strut^n}{\sqrt{5}}

for n0n \geq 0, where ϕ=12(1+5)\phi = \tfrac{1}{2}(1 + \sqrt{5}) and ϕ^=12(15)\hat{\phi} = \tfrac{1}{2}(1 - \sqrt{5}).