Theorem T37 Let FnF_nFn be the Fibonacci numbers. Then F_n = \frac{\phi^n - \hat{\phi}\strut^n}{\sqrt{5}} for n≥0n \geq 0n≥0, where ϕ=12(1+5)\phi = \tfrac{1}{2}(1 + \sqrt{5})ϕ=21(1+5) and ϕ^=12(1−5)\hat{\phi} = \tfrac{1}{2}(1 - \sqrt{5})ϕ^=21(1−5).