Theorem T77 ∑n=1∞1ns=∏p prime11−p−s, s>1\sum_{n=1}^\infty \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}, \; s > 1 n=1∑∞ns1=p prime∏1−p−s1,s>1 prime-number notation-real-infinite-summation notation-real-infinite-product